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Abstract 

We give the notion of frame bundle of the Brownian bridge and we establish over it a Sobolev 
Calculus. We construct over this frame bundle a non-trivial circle bundle by using its functionals, 
and we study the associated stochastic gauge transform of this bundle over the original Brownian 
bridge. 
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0. Introduction 

Let us consider the based loop space of a two-connected manifold M. It is the space of 
smooth applications yS from the circle St into M such that yo = yi = x. We denote it by 
L,(M). Let us introduce a G principal bundle Q over M: we suppose that the structure 
group is simply connected and compact. We consider the based loop space L,(Q) of Q 
starting from e over X: it is a based loop group bundle whose structure group is the based 
loop L,(G); its typical element is denoted by qs and the typical element of the structural 
based loop group is denoted by g,. Moreover, L,(Q) is simply connected. 

Let us suppose that G is simple simply laced. There exists a smallest Killing form ( , ) 
with the following property: the form c over L,(G) which at the level of the Lie algebra is 
defined by 

1 

4x3 Y) = & s (X(s), dY(s)) 
0 

(0.1) 
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is closed Z-valued. Associated to c, there exists a central extension L,(G) of L,(G). A string 
structure is a lift of L,(Q) by L,(G), called L,(Q) [Wi,Ki,Se,CP,CM,ML] Coquereaux 
and Pilch [CP] and Carey and Murray [CM] have studied geometrically the obstruction 
to construct a string structure, unlike the algebraic topological considerations of the other 
references mentioned above. Generally the authors speak of the free loop space, but in this 
paper, we will work over the based loop space as in [CM], without specifying by notations 
that it is the based loop space. 

Let us introduce the Brownian bridge measure over M, if we suppose that M is a compact 
Riemannian manifold. The loop 1/. in M is only continuous. If we put a connection over Q, 
the parallel transport t: IS almost surely defined. A loop q, over Q can be described as 

with gl = (r”)-‘. I 
This allows us to construct a measure over L(Q) in two ways: 

- In the first way, we construct a measure over the paths of finite energy g, of G starting 
from e, and we desintegrate it according gl = (te)-‘, by using the positivity theorem 
of [BL] or [AKS]. (The reader can find in [Ll] a jump process version). It is the way 
followed in [LlO]. 

- In the second way, we consider the traditional measure over the path group, which lives 
over continuous paths, and we desintegrate it according gl = (tlQ)-’ (see [Gr3,AM,AH- 
K,Sh2]). 
In the first case, the stochastic fiber of L(Q) is a set of finite energy pinned paths in G. 

In the second case, the stochastic fiber of L(Q) is a set of continuous pinned paths in G. 
The first case only is stochastically related to the considerations of [L9,LlO]. 

Carey and Murray [CM] have introduced, when the first Pontryaguin class of Q is equal to 
0, a two-cocycle FQ over L(Q) which allows to construct a circle bundle over L(Q) which 
gives the string structure L(Q) over L(Q). The transition functions are surely defined. 

In the stochastic context, when no measure is defined in the fiber of t(Q), L6andre [L9] 
has constructed the Hilbert space of sections of spinor fields when a unitary representation 
of L(G) is given. Unfortunately, L(Q) is only formally a circle bundle over t(Q) when 
stochastic structures are given in the basis and in the fiber, and so we cannot define L(Q) 
by the space of sections of L(Q) into i(Q), because generally these sections do not exist, 
if they are supposed to be regular enough. 

In order to overcome this problem, we proceed as before: we define a set of transition 
functions with values in the circle (instead of L(G) as it was done in [L9,LlO]) over L(Q), 
which are almost surely defined. We define Sobolev spaces over L(Q) such that these 
functionals with values in the circle belong locally to the first-order Sobolev spaces. This 
allows us to define formally a circle bundle L(Q) over L(Q), called the stochastic string 
bundle. We consider the Haar measure over the fiber: it is invariant under rotation. This 
allows us to define rigorously the space of LP functionals of L(Q) without to speak of the 
topological space L(Q) (see [MM] where the topological space of the central extension of 
a continuous loop group is constructed, but the projection is almost surely defined). 
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Moreover, we consider a gauge transform of L(Q): it is a measurable functional from 
L(M) into Lz(G), the space of loops in G with two derivatives bounded in L*. A gauge 
transform acts over L”(L(Q)). Namely, we have to consider in this case the analogous of 
the Albeverio-Hoegh-Krohn formulas [AH-K,L IO] for C’ loop group: the Girsanov density 
is not in all the LP in this case unlike the case of continuous loop. 

If we consider over the fiber the measure which is involved with continuous paths and 
with the heat kernel over a Lie group [Gr3,AH_K,Sh2,AM], we define i(Q) by its space 
of functionals. The Albeverio-Hoegh-Krohn density belongs to all the LP. This allows us 
to define a gauge transform over L(Q): it is a map from L(M) into Lr (G), the central 
extension of based loop in G with one derivative in L*. A gauge transform acts over 
L”-(L(Q) = f-l LP(L(Q)). 

1. The case of finite energy loop group 

We consider a Riemannian compact manifold M. We consider the law of the Brownian 
bridge PI,, over L(M), the based loop space starting from X. We introduce a G principal 
bundle Q over M, with compact simply connected group G. We build over Q a connection 
AQ. The parallel transport r,,? over a typical loop y,Y in M is almost surely defined with 
respect to this connection. 

We consider Lb,(Q) the space of loop qs in Q over yS of the shape qs = rSQgS with 
gt = (t$)-’ and go = e (see [Bil,JLl,Dr] for analogous considerations). Following [CM], 
we can give an abstract meaning to this statement. Let I&(G) be the set of finite energy 
paths in G starting from e. We get a map n from Pa”(G) into G by sending g. to gt I%“(G) 
becomes a Ls,(G) principal bundle, this last quantity being the finite energy based loop 
group of G. We have a map f from L(M) into G: y, is sent over (re))‘. The map which 

to q. associates (tsQ)-‘qs in I&(G) is nothing else than the pullback f* of f’. We get 
therefore the commutative diagram: 

hi,(Q) -+ 4itl (G) 
4 4 (1.1) 

L(M) -+ G 

1.1. First step: Construction of a measure over Lb”(G) 

We will begin by constructing following [LlO] a measure over E&(G). We consider a 
flat Brownian motion B, starting from 0 in 8, the Lie algebra of G, and C an independent 
Gaussian variable over i? of coariance Id and of average 0. We introduce the following 
differential equation: 

dg,y = gs (C + & ) d.7, go = e, 

gl has a smooth density q(g) (see [LlO]). 

(1.2) 

Lemma 1.1. q(g) > 0. 
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ProojY We consider the map (C, B,) + gt. It belongs to all the Sobolev spaces over the 
abstract Wiener space defined by the couple (C, B,), and is surely defined. If we do the 
small perturbation, 

CC, B,> + (C + kc’, B, + hHs), (1.3) 

where H, has finite energy, we get a perturbated path gs (h) in G. Moreover, in h = 0, 

d&gr(hj = &(WC + B,) ds + g,(C’ + f&Ids. 

Therefore in h = 0 

(1.4) 

I 
a 
jp = s gu(C’+&k,‘dw. 

0 

Let us study the behavior of the map D 

CC’, H.1 -+ s gu(C’ + Hdg,' du. 

0 

It is equal to 

1 1 

s g,C’g,’ du + 
s 

(K,, dldu Hv), 

0 0 

(1.5) 

(1.6) 

(1.7) 

where KI = 0 and d/dvKt is a rotation of the Lie algebra z9 of G. We deduce that the 
image of D for all (C, B.) is the whole space. By the positivity theorem of [BL,AKS] (see 
[Ll] for a jump version), we deduce that q(g) > 0 for all g in G. 0 

Letusconsidersl < s:! < ... < s, < l.g,,, . ..,gs,,gt hasadensityq(gs,, . . . ,gs,,gt) 
(see [LlOl). As in [LlOl, since q(g) > 0, we can construct a measure over the C’ path in G 
starting from e and arriving in g such that, for any cylindrical functional F(g,, , . . . , gs,), 
we get 

E,lP(gs, 3 . . ., g,,)l = 
1 P(gs, 1 . . ., gs,)q(g,, , . . . , gs,, g) dng,, , . . . , drrg,, 

4(g) 
(1.8) 

where dng,, is the Haar measure over G. Following the lines of [LlO], this gives an 
expression for the expectation of cylindrical functionals which gives a probability measure 
over finite energy paths going from e to g. Let us denote this measure by dP,. 

Definition 1.2. Over &,(Q), we define the measure @tin by dPt,, @J dP(re,_, . 
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We can give an expression of this measure for the expectation of cylindrical functionals 

F&s, 9.. ., qs, >. 5% get 

I*fin[F(qs, > . . . 3 %,,)I = ~l,x[~~$-, [~(+g,, 9 . . . 3 &b,)11. (1.9) 
I 

1.2. Second step: Construction of Sobolev spaces over LE, (Q) 

Let us consider the principal bundle Pe,(G) over G, g. -+ g, . Since G is compact, we 
can introduce a smooth connection VG for the principal bundle Psmooth(G) -+ G where we 
consider smooth paths g,. Local sections of this principal bundle are given in the following 
way: we choose a small neighborhood Gi of G, and we get a smooth section g, -+ gf (g,): 
(s, g,) + gi(g,) is a smooth application from [0, l] x G; into G such that gu(g,) = e and 
such that gi (g,) = g,. P,=,“(G) becomes by that an Lsmooth(G) principal bundle. 

The connection form over Gi is given by a one-form into Gi with values in &,ooih(fi): 
let Ki,.(.)(g,) be this connection form. 

Let us consider the pullback of this connection form by f, f* in diagram (1.1). If (re)-’ 
belongs to Gi , the connection form is given by 

X + Ki..((d(r,Q)-‘y X))((r,Q)-‘), (1.10) 

where X is a Bismut’s tangent vector over L(M): 

X, = t,H,. (1.11) 

Namely the tangent space T, (L(M)) is constructed as follows: rs is the parallel transport 
over ys for the Levi-Civita connection and H, is a finite energy loop in Ty,, (M) starting from 
0, since we consider the based loop space. We put X, = rs H, and the set of X, describes 
the tangent space of a loop. It is a Hilbert space endowed with the Hilbert structure: 

1 

(1.12) 

0 

Let us recall that (rlQ)-’ is a group transformation of the fiber of Q in the starting point x. 
In particular, since X0 = X, = 0, we get [Bil,Gr2] 

I 

(d(r$), X) = rf /(r:l-‘RQ(dy,. X,>+ (1.13) 

0 

where R Q is the curvature tensor of Q for the connection AQ. 
Let X, = r, H,, Hs being deterministic, a tangent vector field over the loop space at the 

basical level M. We deduce a tangent vector Xi for the based loop space at the total space 
Q level. If (tF)-’ belongs to Gi, it is given by 

X,h = rsHs - Ki.s((d(re)-‘t X))((re)-‘)g,, (1.14) 
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where g,Y belongs to the loop group fibre: in particular, &((t,Q)-l),.Y is solution of the 

stochastic differential equation (1.2) starting from e and arriving at (r,Q)-‘. We deduce that 
gs is the solution of 

dgs = gs (C + Z3.y) ds - (x,:)-t dg: <us ds (1.15) 

with the conditions 90 = gt = e. If we do not give the initial condition gt = e, we can 
perform the same calculus of variation as in [LIO], and we can desintegrate the law of gs 
solution of (1.15) according ~1. Its law is absolutely continuous with respect of the law of 
(1.2) with the same boundary conditions. 

Since K;,. is intrinsically defined, Xh is intrinsically defined. Xh appears as the horizontal 
lift of the vector X over L(M). 

Proposition 1.3. Let F be u cylindrical,functional over Lb,(Q). F = F(q,, . . . , qsi), 
SI < ..’ -C sk. There exists a,functional div X” which belongs to all the LP(pfi,,) such that: 

pfi”[(dF, Xh)] = F~~[F div Xh]. (1.16) 

Proo$ Q I Modulo a partition of unity over G, we can choose F (q,Y,, . . , q,Yk)h; ((5, )- ) where 
hi is a smooth function from G to [O,l] with support in Gi. Lcn( Q) becomes trivial with 
this restriction. We split Xh into X + X,“. First we take the derivative of F when rt ’ is . 
supposed fixed in the normal direction X; and we apply the calculus of [LIO]. We get at 
this stage: 

E(,:))_, ](dF, Xc)1 = Ecr~)-, [F div X;‘l, 
I 

where 

(1.17) 

sup E(r~i’L]divX; Ip] < co. (1.18) 
(T$‘EG, 

Secondly, we take the derivative in the direction X, when we fix an element of the fiber: 
this means that we take the derivatives of the parallel transport (r$-’ and not of the gs,. 
This belongs to the domain of the traditional integration by parts over the based loop space 
at the basical level M, because r,$Q belongs to all the Sobolev spaces (see [L2]), and in this 
case there is a divergence associated to X,divX which does not depend on the fiber, and 
which belongs to all the Lp. 

We put 

divXh = divX: + divX. 0 (1.19) 

Let s + K,Y be a deterministic loop in 19 with two derivatives in L’. Let X:(K) be the 
vertical vector field associated. We get: 

Proposition 1.4. Let F be a cylindrical,functional over Lhn( Q). There exists a,functional 
divX:(K) independent of F which belongs to all the LP(pe”) such that 

pfin[(dF. x:.‘(K))] = ktin[F div XT(K)]. (1.20) 
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Pro08 We first operate in the fiber. By using integration by parts formulas over Eq. (1.15) 
where the vector field is g,Y K, (and not Ki,,g,y as it was done in the first case), and after 
desintegrating them, we deduce that 

Ecr~,-, ](dF, X,V(K))I = Ec,gj_, [F div XF(K)I, 
I I 

where 

(1.21) 

sup F(re)-, [ldiv X:(K) Ipl < CC 
_Q ’ 

(1.22) 

by repeating the calculus of [L lo]. Therefore the result. 0 

The tangent space of q, belonging to Lhn( Q) is by definition the sum of vectors Xh + XF. 
We endow it with aHilbert structure. The vertical part and the horizontal partare orthogonals. 
For Xh( H), we choose 

I 

llXhW)l12 = 
s 

Ild/ds f&l12ds (1.23) 

0 

and for X:(K), we choose as in [LlO], 

llX:(K)l12 = IIK;,Il” + 
.I 

IIK:‘l12 ds. (1.24) 

0 

Since we have integration by parts formulas, the notion of derivative can be extended 
consistently by starting from cylindrical functionals over Ls,( Q). The H-derivative of a 
functional dF is a Hilbert-Schmidt cotensor from the Hilbert tangent space Tq (Ls, (Q)) 
into R. We denote by l(dFJ12 its Hilbert-Schmidt norm which is almost surely defined. 

We put: 

Definition 1.5. WI ,,, (Lh, (Q)) is the space of functionals over Ls, (Q) endowed with the 
norm: 

IIFllw,.,~II = IlFllu + II II dFll 11~~. (1.25) 

1.3. Third step: Function& over the string bundle 

Let us suppose that M is two-connected, such that L(M) is simply connected (see [PSI). 
Let us suppose that G is simple, simply laced. Therefore L(Q), the space of continuous- 
based loop of Q, is simply connected. 

We will begin by recalling the construction of the string bundle after [CM] when we 
consider finite energy loop in M. We state the commutative diagram (1. I). 

Hypothesis. The first pontryagin class pt (Q) of Q is equal to 0. 
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There is a central extension La,(G) of&,(G) given by a two-cocycle over Lb,,(#), the 
Lie algebra of&,,(G): 

1 

4x3 Y> = & {LL dY,) - (Ys> dXs)> (1.26) 

0 

where X, and Ys are finite energy loops in the Lie algebra of G starting from 0. This form 
fits together into a &(G) two-form: if X, and Y. are finite energy paths in t9 starting 
from 0. 

4x3 Y> = & 
s 

(X,, dYs) - (Y,, dX,). (1.27) 

0 

Since G is simple, all the invariant bilinear forms on t9 are proportionals. We can find a 
Killing form such that 

w(X, Y, Z) = &(X, [Y, Zl) (1.28) 

defines a G invariant three closed-form over G with integral values [PS,CP] because G is 
simply laced. We choose the smallest one which checks this property. 

We get the main result: 

dc = rr*w. (1.29) 

Since PI(Q) = 0, we get pt (Q) = du. By [CM], 

I 

f*w= d 
s 

u(dY, . . .I + dl, 

0 

(1.30) 

where 

1 
p=s s 

((rQ)-‘RQ(dYs, .)T,~ A (rQ)-‘RQ(dyU, )t”). s U U (1.31) 

O<U<S<l 

In order to understand this formula, let us recall that w is a two-form over L(M) which to 
a couple of vector (X., Y,) over Y, associates: 

1 

-I 
((rQ)-tRQ(dYs, X,)r,Q, (rQ)-tRQ(dy,, Y,)rQ) 

8n2. s U U 
o<u;s<1 

+ antisymmetry. (1.32) 

At this level of computations, we consider finite energy loops in M. But in (1.30)-( 1.32), 
if we consider continuous loop, we can apply the theory of stochastic iterated integrals 
in order to show that & u(dy,y . . .) and CL are forms which are almost surely defined 
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(see [JLI]) and that a stochastic exterior derivative is defined over these forms (see 
[L5,L7,L8]). 

Let us come back to the finite energy loop space over M. The upper horizontal map in the 
commutative diagram (1.1) is the pullback f* of the horizontal down map f. We consider 
the form (f*)*c over L(Q). It is not closed. Then we perturb it by a basical form and we 
get (,f*)*c - n*(k + u). It becomes a closed form over L(Q), but it is not Z-valued. Let us 
recall that aChen form is a finite sum offorms of the type &<,, c,,,<s,<, WI (dy,, . .) A.. .A 

wz (dy,, . . .) where the wi are forms of degree strictly positive over M. The cohomology 
of Chen forms is equal to the cohomology of the based loop space [Ad]. We can perturb 
therefore (,f*)*c - n*(~ + u) by a closed Chen form rr*/I such that the following property 
is satisfied: the two-form over L(Q) 

FQ = (f*)*c-n*(p+u++) (1.33) 

is closed Z-valued; the integral of FQ over a surface without boundary in L(Q) is an integer. 
To FQ is associated a unique circle bundle over the finite energy based loop space of Q 
whose curvature is 2x i FQ. 

FQ has still a meaning over Ls, (Q). There are two contributions: 
- A basical part -rr*(p + u + p) which is treated by the theory of stochastic iterated 

integrals of [JLI]. 
- A vertical part (f*)*c, which is a deterministic one. It is of the same shape studied by 

Carey and Murray [CM], but since the measure over the fiber lives over finite energy paths 
going from e to (rlQ)-‘, the stochastic treatment of this contribution will be analogous 
to the deterministic treatment of [CM], by adding some more integrability conditions 

In the stochastic context, we will define the circle bundle &(Q) over La,(Q) associated 
to FQ by its functionals: namely, let us suppose that there exists a set Vi, i E N, of subsets 
of Lh,( Q) satisfying the following conditions: 

(i) l_j Vi = Lh, (Q) ph,, almost surely. 
(ii) There exists an increasing sequence of functionals Gy which belong to all the first-order 

Sobolev spaces such that almost surely 

G;>OcK (1.34) 

and such that almost surely when n -+ 00 

lim Gr = Iv, (1.35) 

(iii) Over V; fl Vj, there exists a random variable pi,j(q.) with values in S’ such that 
Gy G7pi.j (4.) belongs to all Sobolev spaces of first order. 

(iv) Over Vi n Vj, kfin almost surely 

Pi,j (cI.)Pj,i (4.) = l. (1.36) 

(v) Over Vi n Vj n Vk, pfin almost surely 

Pi.j(q.)Pj,k(q.)Pk,i(q.) = 1. (1.37) 
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Remark. Instead of using the notion of a property which is true phn almost surely, it should 
be possible to use the notion of a property which is true quasi-surely. For that, let us define 
what is a set of capacity 0. We define the capacity of an open set 0 as the infimum of the 
first Sobolev norm in LJ’ of functionals F such that F > 10 almost surely. The infimum 
of the capacities in LP of the open set containing a set G is called the capacity in LP of G. 
A set is of capacity 0 if all its capacities in LJ’ are equal to 0. 

Definition 1.6. A measurable functional F(@,) associated to the formal circle bundle con- 
structed from the system of pi,j is a family of measurable functionals F; : Vi x S’ + R! 
such that almost surely in q. and II (we take the Haar measure over St) 

Fi(q., ui) = Fj(q., uj)- (1.38) 

where Uj = uipi,j (4,) almost surely. 

Let us recall that the Haar measure over the circle is invariant under rotation. If we 
consider a measurable F(<,) over the formal circle bundle associated to the system of pi. j, 
we can integrate consistently in the circle fiber and we get 

F,(q.) = 
s 

I ~G.) Ip du. (1.39) 

tiber 

Definition 1.7. A measurable functional F(@,) belongs to LJ’(J&) if 

(1.40) 

Remark. We can go further if there is a connection as in [LIO] over the formal circle bundle 
in order to speak of functionals F(G,) which belong to some Sobolev spaces associated to 
the system of pi,.j. 

Let us consider the curvature form FQ over Lh, (Q): we will produce a system of transition 
maps Pi,j(q,) which will satisfy (i)-(v). This will allow us to construct the space of LP 
functionals over the formal circle bundle &,(Q) over Lh, (Q) called the string bundle 
of Q. 

Let us consider a loop of finite energy in M called y; and the ball B(yi, 6) for the uniform 
distance for 8 small. We can take a countable set of y; such that U B(yi, S) = L(M). Let 
li,t(v) be the path 

li.t(V)s = expY,,T[(l - ~)(Ys - Vi.~)l (1.41) 

joining 1/ to Y;. We complete it in any path going from y; to yrer. We produced by that a 
distinguished path going from )/ E B(y;, 8) to yrer: we call it ii(v). S is chosen small 
enough. If y belongs to B(yi, 6) n B(yj. S), we can fullfill the triangle y. yi. vj by a 
distinguished surface by using another time the exponential charts; we can fullfill the triangle 
y;, vj, Yrer by a surface, because the finite energy loop space is simply connected. We 
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poduce a distinguished surface Si,j (y) with boundary li (v) and lj (v). By using the theory 
of stochastic integrals, the integral of P + v + B over S;.j(v) exists almost surely (see 
[L9,LlO]). Moroever, if we take the polygonal approximation y,/.” of y., we have almost 
surely: 

s (II + u + PI -+ s (P + LJ + B). (1.42) 

s,, , (Y.“) S.,(Y) 

If we imbed M into Rd, we see that JY,, , cyj (p + u + p) is the restriction of y E B(yi. 6) of 
a non-anticipative integral defined almost surely over the whole L(M). 

The condition v E B(y;, S) is the first condition to define l$ (Condition *). 
The second condition is (r,‘)-’ E Gi (Condition **). 
The problem now is to lift this surface Si,j(y) at the basis to Lb,(Q) at the level of the 

total space. By the rule of calculus depending on a parameter, there exists a smooth version 
in t oft + ~,~(Zi,~(y.)). There exists a section of &,(Q) if (re)-’ E Gi: Let us call 
this section qi.,(v,). By pulling back the connection VQ by using J’ and the commutative 
diagram (1. l), we get a lift of l;.t (v.) called &,t (y.) starting from q;,, (v.) over the piece of 
the curve li,, (v,) joining y. to yi,. . 

The next condition in order to define Vi (condition * * *) is that this occurs in a small 
neighborhood for the C’ norm of a curve over yi,.: let us denote this curve qi,., by patching 
together the indices in the basis and in the fiber. We can therefore find a distinguished curve 
which joins the element of the path &,r(y.) over M,. to the given element qi,. over yi,,: it 
is a vertical path; it is possible to do that because condition *** is checked. We go from 
q;., to q,r by any path over the path which goes from yi.. to yrer. Conditions *, **, *** 
allow to produce a lift &.t(qi,,(y,)) of li.r(~,) starting from q;,.(v,) and arriving to qrer. If 
q, lies in a small ball for the finite energy distance in the fiber (condition ****) after the 
trivialization which arise from the local slice y. + qi,,(v.), we can find a distinguished 
vertical path joining q. to q;,.(v.) and therefore a distinguished path joining q. to qref and 
which lifts l;.r (v,). 

Vi is given by conditions *, **, ***, ****: condition * allows to produce a distinguished 
curve joining y. to Yrer; condition ** allows to produce a section qi,.(y.) over y.; by using 
a connection, we produce a lift of the distinguished path joining y. to yrer: condition *** 
allows to produce a vertical path joining the endpoint of this lift to qi.; condition * * ** 
allows to produce a distinguished vertical path joining q. to qi,.(y,). 

The set of Vi clearly checks (i), because the parallel transport is almost surely delined 
and because almost surely the map t + r,Q(li,t(y)) is smooth in t. 

Let us show that V, checks (ii). 
It is easy to find an approximation of the condition x* because 1/, + re(,.) belongs to 

all the Sobolev spaces and because G is finite-dimensional. 
Let us consider condition *. Let us proceed as in [JL2]. Let us introduce a function g 

from [O. co[ into [l, co] which is equal to 00 if z > 8, which is equal to 1 if and only if 
z 5 S’ < 6” < 8, and which behaves as l/(6’ - z) +I (for a large negative integer), when 
,: + 6’. Let F a smooth function from [ 1. oo[ into [O, 11, with compact support, and which 
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is equal to 1 only in 1. Let Fi be the functional: 

(1.43) 

Fi belongs to all Sobolev spaces of first order and produces an approximation of condition *. 
We can perform the same approximation in the fiber by using: 

F this time is only equal to 1 in 2. We have used the section qi,,(y,) because condition * is 
satisfied. This gives an approximation which belongs to all the Sobolev spaces in the fiber 
of condition ****, by working as in [JL2] and in [L3], but with Eq. (1.15). 

It remains to treat condition * * * for the parallel transport. A sufficient condition is that 
the path t + rlQ (li,r (y.)) remains in a small neighborhood of a given C’ curve gi in G. We 
choose for F; : 

I 

+ 
s 

R(d(rtQ(li,.y(y.))-’ d/dsr,Q(li,,~(y.)), g,ys’ d/ds gi.,)) ds (1.45) 

0 

By using the fact that the modulus of continuity oft + r$(Zi,<(Y,)) and t + rf (li,, (v,))-’ 

d/dtrtQ(li,,(y,)) is known in probability, we deduce a regular approximation of condition 
***. 

Therefore Vi satisfies (ii). 
Let us now construct a random variable pi,j (q.) with values in S’ over Vi n Vj. Let us 

consider the lift &,t(q,) of Zi,r(l/,). It gives a curve which goes from q. to qref. If we can 
produce a distinguished surface ji,j (9,) with boundary I;:,, (9,) and h,r (q.), this will allow us 
to produce a system of transition functions by integrating FQ over this surface. This surface 
will be a lift of the basical surface Si,j(y,). Let US remark that in (i), there are four types of 
conditions. Especially li,, (v,) can be equal to lj,t(v.) if i # j. But in all the cases, we can 
complete the loop constructed by li,t(v.) and by Ij,r(Y.) runned in the opposite sense by a 
surface Si.j (y.) which can be treated as in (1.41) and (1.42). 

We consider the path which joins Zi.t (y,) to Ij,t(v,) over the small triangle constituted 
by y., yi,. , vi,, . we call it li,j,r,u (v,). We choose first a distinguished path joining qi., (y.) 
to qj,,(y,). Then we lift the path u -+ 1. I,,,r,u(y.) by starting from &,,(q,), and we arrive at 
jj,t (q.) over Ij,t (v,). Therefore 1J.t (4,) and b.t (q.) are in the same fiber. In a unique way: 

lj,t(q.) = fj,t(q.)gi,j,t(q.). ( I .46) 



R. LAandre/Journal of Geometry and Physics 26 (1998) 1-25 13 

We join qi,. to qj,. by any deterministic curve, and we complete the triangle constituted by 
qi.,, qj,., and qref by a deterministic curve. We complete the square constituted by qi,.(y,), 

qj,.(y,), qi,, and qj,, whose boundary is constituted by a loop in Lb,(G) by any surface in 
LE, (G). We complete the loop q., qi,, and qj., by any vertical loop in Len(G). The union of 
the two vertical surfaces which are obtained is ca1ledSi.j (4.). The surface which is obtained 
by lifting the path u -+ Zi,j,r,u (v.) is called 5;. j (4.). We will not care of the deterministic 
surface which joins qi,,, qj,, and qref. We put modulo this deterministic surface: 

Si,j(q.> = ii/,j(q.) u Si.j(q.1, 

We would like to define pi,j (q.) by: 

(1.47) 

r 1 
pi,j(q,) = exp -2ni 

L 1 
s 

F4 

C,(Y.) 

(1.48) 

The boundary of the surface Si, j (q.) consists of the two path &,r (q.) and c,r (q.) circled in the 
opposite sense. On the other hand, Si,j (q.) projects over Si,j (y,): the only problem is for the 
deterministic surface completing the triangle qi.,, qj,, and qref and the surface completing 
yi,,, yj.. and Yrer, but we can choose for the second one the projection of the first one. So 
the integral of the basical term can be treated by the method of [L9,LlO]. 

Moreover 

l;:.j,r.u(q.)s = t~(li,j.t.,(v.))gs(li.j,t.u(q.)) (1.49) 

is almost surely in q, smooth in t, u with values in Lb,(G) considered as a Hilbert-Lie 
group: in order to be precise, it is only piecewise smooth, but the subset where it is smooth 
do not depend of q.. In particular if we look ( 1.49) only at the small triangle over y, , yi., , vi,. , 
it is smooth in t and U. Therefore the vertical integral &, 

1.J 
(9 ,(f*)*c is a traditional integral. 

It remains to consider the integral of (f*)*c over the vertical surface Si,j(q,) which is a 
traditional integral. 

Let us consider a polygonal approximation q! of q.. This means that we take the polygonal 
approximation v,” of y.: this is possible if the length of the subdivision is large enough. We 
consider qr = tsQgs, and we write qf = ~,f(y,~)g: where g,: is a suitable polygonal 
approximation of g,: the only problem to overcome is that gy = (rtQ(r”))-’ instead of 

(rF(y.))-‘, but it is not a real problem because these two elements of G are closed when 
II is large. 

We have: 

Lemma 1.8. Almost surely over x fl Vi 

Pi,j(qr) + Pi,j(q.) (1.50) 

Proof For the basical integral, this results from the rules of approximation of non-anticipative 
integrals. 



14 R. L6andre/Journal of Geometry and Physics 26 (1998) 1-25 

For the vertical integral, the contribution of $ j (qy ) tends almost surely to the contribution 

of S;, j (qr ) because the parallel transport for the pullback connection depends smoothly from 
the curve li,j,r,u (Y,~) (see Lemma 1.9 for similar considerations). 

The main problem is the contribution of the integral of FQ over si,i(qn). But we can 
choose any vertical surface with the same boundary: its contribution changes by an integer 
and does not affect p;.j(qy). In particular, we can choose a surface S;,j(q”) in Lhn(G) 
which is closed from Si,j (q.). 0 

Remark. We can give the general condition such that the set of transition functions can 
be defined. We produce a basical surface such that we can take the integral of I_L + u + B 
by using the theory of Stratonovitch stochastic integral. We produce a lift of this basical 
surface such that the integral of (f’*)* c over the vertical component of this lift gives a 
traditional integral. There are of course a lot of these lifts, but, generally, the purpose of 
a connection is to lift a curve, therefore a surface. Moreover, the basical integral depends 
smoothly (in a generalized sense) on y. as we will see, if the distinguished basical surface 
depends smoothly on v. (in an appropriate sense which will be descibed in [L12]) and since 
the parallel depends smoothly on the curve, by using something as Lemma 1.9, the vertical 
part depends smoothly on q,. This dependence of the transition functions works only in the 
Sobolev spaces and gives some rigidity to the notion of bundle (let us recall that all bundles 
over a finite-dimensional manifold are measurably trivial). 

We can check now conditions (iv) and (v). FQ is closed Z-valued over the finite energy- 
based loop space of Q. In particular, the transition function pi,j are defined for q(1 and check 
surely (iv) and (v). Lemma 1.8 implies (iv) and (v) for pi,j (q.) almost surely. 

It remains to check condition (iii). For this purpose, we introduce a small modification 
to the notion of Sobolev spaces at the basical level of L(M) (see [L2,L3]). We consider y,” 
the polygonal approximation of y., which exists modulo some boundary terms which are 
due to the fact that two continuous points over v. x.(, and ysi+, can be far, given a suitable 
subdivision si of [O,l]. These boundary terms disappear when n -+ 00 (see [L2]). We take 
the derivative of cylindrical functionals for the vector fields r,; Hs = Xi where t,! is the 
parallel transport along the polygonal approximation, and we choose the horizontal lift X$* 
of it. divXh.” tends in law to divXh (see [L2]). So we decide in our definition of Sobolev 
spaces to take the derivatives of cylindrical functionals in the direction Xh,” and to pass at 
the limit. 

Let us consider pi,i (q!). Since we can integrate over any surface CYi,j (qr) with boundary 
equal to the distinguished loop constituted by ii., (qr) and by G,t (4:) circled in the opposite 
sense, the derivative of p;.j (4:) over Xn is given by 

FQ(.> %(l;,t(q;)) - s FQ(.> %d-j.&:))) 
i,.&/“) 

(1.51) 
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2, (c,, (ST)) is the derivative of G., (4:) along Xn: X” is a vector along q! splitted in Xh,n + 
X,“.“. 

There are two parts in (1.5 1): The part which is endowed with rr* (P + v + j3). It gives 

i 1 ss (P + V + BjC.9 xt(li.t(Y.“))). 

lj.! (Y") L.,(P) 

(1.52) 

By using the theory of non-anticipative Stratonovitch integrals and imbedding A4 into Rd, 
the stochastic integral associated to (1.52) as well as its kernels tend in all U’ to 

i i 
s s - (P + V + BlC.3 Xz(li,t(Y.))). 

l,.l(Y) I,,, (Y 1 

(1.53) 

It remains the vertical part of (1.5 1). 
Let us call tfG(I) the parallel transport over a curve in G starting from a given element 

in PC,(G). Let us consider a vector K,I, along 1. 
The formula of [Bi 1 ,Gr2] gives 

t 

V,G, r,‘(l) = s:(I) 
s 

(&I))-‘R’(dl,, K,l,)t,G@du, (1.54) 

0 

where RG is the curvature tensor for the connection VG for the principal bundle Pn, (G) + 
G whose structure group is reduced to the smooth based loop group. 

We choose now the path t -+ (r~)-‘(li.r(y,n)). We have: 

VX1t (re)-’ (li.t (V”)) 

= Kn (~~)-‘(&(y~)) t 1 

IL- s (r,e)-‘(li.t(~.n>)RQ(d,~i,t(y.n). X:,,)(r,e)(li,t(v.“)) b,e)-‘My”D 

0 

(1.55) 

K: is smooth in t and tends in all the LP to the limit expression Kt for the non-polygonal 
loop y,. The main difficulty to treat in the vertical part of ( 1.5 1) is the derivative of the 
parallel transport over Zi,, (v,“) in Lh,,( Q) for a basical vector field X”. The derivative along 
the fiber does not present so many difficulties, because we do not have to take the derivative 
of the parallel transport in the integration over the vertical paths joining qr to qi,.(y.“) and 
joining qy to qj,,(y.‘). 

The following lemma allows to solve the problem: 

Lemma 1.9. Uniformly in s and t if*, ** and *** are satisjed: 

(1.56) 
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and 

d/ds t~((t~)-‘li,.(y.“))qi,.(y.n)( s + d/d~~~G((~~Q)-‘~i..(Y.))qi..(Y.)(S) (1.57) ) 

in all the LP. 

Remark. s is the element of the typical path in Lc,(G) which is an element of the fiber. 

Proof of Lemma 1.9. By cutting the time interval in a finite number of small subsets, we can 
suppose since *** is checked that the path t -+ (~$)-‘(li,~(y,~)) and t + (s.f)-‘(l;.l(y.)) 
lies in a small neighborhood Gi of G where the path fibration Ph,(G) + G is trivial. Let 
Ki,, be the connection form of VG over Gi. 

Let us denote by It the path t --+ (t$)-’ (li,r (y.) and by 1: the path t -+ (tf)-’ (li,r (y”)). 
Since *** is checked, we get 

r,G(l.)(g.)(s) = c 
s 

Ki,s (It, )(dldt lrl) . . ’ Ki,, (It, )(dldt l,,, ) 

M o<r, <...<r, <r 
xg, dt, . . . dt, (1.58) 

and we get the analogous formula for r,” (lr). Eq. (1.58) is strongly based upon the fact that 
we consider the pullback connection of VG over the loop space. 

Let us denote by Z, (I.) an iterated integral of length m in (1.58) and by Zm (1:) the same 
iterated integral for 1”. We get on the other hand 

I,@.) - II?I(l12) 

= 
c s 

Ki,,(l,,)Ki.,(l,,_,)(dldtl3_,) 

j Otr1 <...<r,<r 

x (Ki,,(lt, )(dldt It,) - Ki,.r(lt )(dldt 1;)) . . Ki,s(l,)(dldtl,,,)g,n dtl dt, 

+ .I K;.s (ItI )(dldt It, 1 ’ . . Ki,s (It,,, 1 (dldt 1,) 
o<r, <...<t,<r 

x (g, -g,“)dtl ... dtm, 

We get by [Bill or [Gr2] 

I 

d/dt lt = tf(li,t(V.)) s (t~(li,r(Y.)))-lRQ(duli,r, dldt(li,t(a))t,e(li.r(y.)) 
0 

(1.59) 

(1.60) 

and the analogous formula for d/dt 1:. 

Let us consider an even integer p. An iterated integral of length m to the power p appears 
as at most Cm iterated integrals of length mp by the Stirling formula, because a product of it- 
erated integrals is a sum of shuffle of iterated integrals of length equal to the sum of the length 
of each iterated integral; after this shuffle, a product of mp terms appears: p of these terms 
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are tending to 0 and some of them are the discrete approximations of the integral and are 
polygonal approximations of (1.60), which are non-anticipative in the Stratonovitch sense. 
We distribute in a sum of at most mp! iterated integrals of length smaller than mp!. For that 
we forget the contribution of rtQ(li,, (Y,~)) which is bounded because of +=++. We have only to 

consider the contribution of Jb’(tl(e)-‘(li,t (y,"))RQ(d,li,,(y,"), d/dt lll,(~))~~~)(4,l(~,~)). 
Let si be the time of the sudivision. We get 

$,+I s (rz)-l (li,r(~,“))R’(duli,,(y.“), d/dt l~,(U))(r~)(li,f(Y.n)) 
.Tl 

(1.61) 

where F = 0 if Ye,+, = ys,. Therefore F has bounded derivatives. We deduce that 

1 I 

s (t,e)-‘li,t(y,“)RQ(duli,t(y,“), d/dtl,l,(u))(r~)(li,f(Y.n)) = s (an(s), dYs)t 
0 0 

(1.62) 

where (Ye is uniformly bounded when n -+ 00. Therefore our product of mp terms appears 
as the sum of at most mp! iterated integrals of Stratonovitch type of bounded elements in 
all the Sobolev spaces. By using the Schwartz lemma [JLI], we see that the expectation 
of such stochastic iterated integrals is bounded by C”P/m. It remains to remark that a 
traditional deterministic integral of length mp is bounded by C”‘/mp! and since the series 
C PI&$, we deduce the first part of the lemma. 

The second part is treated similarly, because in each product in (1.59), we have only 
to take the derivative of one term, which leads to m terms. The conclusion follows as 
before. cl 

1.4. Fourth step: Construction of stochastic gauge transforms 

Let us denote by L,,z(G) the central extension of the based loop group with two deriva- 
tives in G in L*. 

Let us give the following definition: 

Definition 1.10. A stochastic gauge transform of Lw(& (Q)) is a measurable application 
from L(M) into L,,*(G). 

The space of stochastic gauge transforms is a group for the natural composition over 

&in(G). 
The main theorem of this part is the following: 

Theorem 1.11. The group of stochastic gauge transforms acts by isometries over Loo (/I&,,). 
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Before proving this theorem, we will recall some statements of [CP,CM], in the smooth 
loop context. 

An element of L(Q) is the couple of a path starting from the constant reference path in 
Q and which arrives at q,, and of an element of the circle. 

Let us call 

k.) = (I.@.), B) 

this couple. 

(1.63) 

An element of L(G) is the couple of a path starting from the unit path in G and arriving 
in g. and an element of the circle. Let us call 

l:(g) = (l.(g.), a) (1.64) 

this couple. L(G) acts on the right over L(Q) by 

k.).k) = (l.(q.)*l,(g.),@). (1.65) 

This means that after q,, we continue the path (4.) by the path q,lt(g.) which is a vertical 
path. 

Let a map from L(M) into Le.*(G): 

Y. + k.(Y)) (1.66) 

let n be the projection of Lr,, ((2) in L(M). Let F be a functional over L fin (Q). We associate 
the functional FR cy.): 

((4.) + N(q.).kg.(v.))). (1.67) 

The map G. : F --f F([(q.).i(g.(n y.))) is a transformation from the space of measurable 
functionals over &n(Q) into the space itself. The map g.(v.) + G. is a representation 
from the gauge group into the space of linear transformations of the space of functionals 
over &,(Q). 

Let us recall Lemma III.3 of [LlO]. Let g,’ an element of L,,z(G) the loop space with 
two derivatives in L’of G. The transformation 

gs + ‘N,’ (1.68) 

transforms dP, in a law which is equivalent. We can now give the proof of the theorem 

Proof of the Theorem 1.11. Over V; , we have chosen a distinguished path Ii,, (q; ). Let us sup- 
pose that q,g.(nq.) belongs to y. We have to consider the distinguished path lj (q.g.(nq.)). 

Moreover, we have the natural path joining g, (nq,) to e, called lj(g,(nq,)). The paths 
Ij,.(q.g,(rq,)) and li,.(q,)*lj(g.(nq,)) differ by a vertical surface. We can perform the in- 
tegral of FQ over this vertical surface. We find since this vertical can be chosen arbitrarly 
(only its boundary is given): 

(li,.(q,), a).(l((R.(nq,))3 8) = lj,.(q,g.(nY.))3 P(S.)WB)7 (1.69) 

where q. -+ p(q,) is measurable. 
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The measure in the circle fiber is invariant by rotation, because we consider the Haar 
measure. Since the law of q.g. (75 y.) is equivalent to the law of q. in the fiber, we deduce the 
result. cl 

2. The case of continuous loop groups 

We consider still the commutative diagram (1.1) but we take for P(G) the space of 
continuous paths in G starting from e and for L(Q) the space of based continuous loops in 
Q over L(M). 

2. I. Construction of a measure over L ( Q) 

Let us consider this time the stochastic differential equation over G: 

dgs = gs d& (2.1) 

starting from e, which plays here the role of (1.2). gt has a smooth density q(g) > 0, 
related to the heat semi-group over G. If we fix ~1, g, is a semi-martingale going from e 
and arriving at gt : its law is called dPK, . Moreover if the law of g, has the density qs (g), 
we get by the Markov property and the fact that gs is a diffusion over a Lie group: 

E,, [F(g,, 3 ‘. .t &)I = 
Sqs,(gl)qsz-sl(g,‘g*)...q1-s(g~~’gl)dngl ... dngr 

ql(gl) 
(2.2) 

where n is the Haar measure over G. Eq. (2.2) plays the role of (1.8) of Definition I .2. 
We give the following definition which plays the role of Definition 1.2: 

Definition 2.1. Over L(Q), we define the measure by 

(2.3) 

We can give an expression of this measure in terms of cylindrical functionals F(q,Y, , . . , 
qs,) withst < . . . CS,: 

(2.4) 

2.2. Second step: Construction of Sobolev spaces over L ( Q) 

Let us recall that the transition function of the principal bundle P(G) -+ G can be chosen 
in Lsmo,,ih(G), the space of based smooth loops in G. The connection form of VG over Gi, 
a small neighborhood of G, where the bundle P(G) + G is trivialized is a one-form with 
values in L sm00th (I?), the space of smooth based loops in the Lie algebra of G. It is denoted 
as in the first part s + K,,,y (.). 
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We put if (tf)-l belongs in G;, after trivialization of the fiber: 

Xh = t,yHs - Ki,,y((d(tQ)-l X))g s , > s> (2.5) 

where X, = T.~H, is a vector field over the basis in the sense of Bismut (see [Bill) (see 
(1.14) for the analogous formula, where we take s + g, which is C’ instead of being only 
continuous as here). 

Since the connection form is intrisically defined, Xh is intrisically defined. 
We get the analogous of Proposition 1.3. 

Proposition 2.2. Let F be a cylindrical functional over L(Q). We get 

F[(dF, Xh)] = k[F div Xh] (2.6) 

for a functional div Xh which belongs to all the LP if Xh is associated to tS H, where h, is 
deterministic. 

Proofi Let us recall the statement of the Albeverio-Hoegh-Krohn formula over a path group. 
Let gs be the solution of (2.1) and g,’ a finite energy based loop in G. gig, has a law which 
is absolutely continuous with respect of the law of g,, with a Girsanov density which belong 
to all the LP, and to all the Sobolev spaces. Namely: 

d(&) = dg,’ gs + (s;g,)d& = &(g;‘(gf)-’ d&s) + (&,)d& (2.7) 

(gf)-’ d/dsg,i is bounded in L*; since A -+ (gS)-‘Ags is an isometry, we can apply the 
classical Girsanov theorem in order to conclude. The fact that the Girsanov density belongs 
to all the LP is the important difference with the first part. Since s -+ Ki,,$ is a smooth 
application in s with values in the one-form, we deduce (2.6) as in Proposition 1.3. 0 

In order to define a vertical vector field, we consider the vector g, K, as vector in the fiber 
instead of K,g, as before, where s + K, is a deterministic smooth based loop in the Lie 
algebra of G. We put in an intrinsic way: 

X; = 4.K. 

(see (1.19) and Proposition 1.4). 
We get: 

(2.8) 

Proposition 2.3. Let F be a cylindrical functional over L(Q). We get 

p.[(dF, X,“)l = pL[F div X,“l, 

where div X: belongs to all the LP. 

(2.9) 

Proo$ Instead of using the quasi-invariance formula of Albeverio-Hoegh-Krohn in the left, 
we use this formula in the right. Namely, with the same notation as in (2.7), 

d(g& = g,g; (g;)-’ d&g: + gs dg: (2.10) 
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and (gi)-’ dB,gi is still the differential of the Brownian motion in the Lie algebra. We use 
the quasi-invariance formula for g,” = exp[hKs 1, we differentiate them and we desintegrate 
them. This gives (2.5). 0 

The tangent space of Tq. (L(Q)) is the Hilbertian orthogonal sum of the vertical vector 
fields X: and of the horizontal vector fields Xh. For a horizontal vector fields Xh associated 
to r, H,, we choose as Hilbert norm: 

(2.11) 

For a horizontal vector field, X,V associated to the finite energy loop K, in the Lie algebra 
of G, we choose: 

llX,“ll” = s Ild/ds K,ll% 
0 

(2.12) 

This shows us that the stochastic tangent space of L(Q) is parallelisable: it is the sum of 
L’(T,(M)) and of L2(0) with conditions: 

s dH, = 0, 
s 

dK, = 0. (2.13) 

0 0 

The reader can see (1.23) and (1.24) for analogous formulas. 
These integration by parts formulas allow us to close the operation of H-derivative (see 

[Grl]) and to give the following definition. 

Definition 2.4. WI .p (L (Q)) is the space of functionals over L(Q) endowed with the norm: 

IIFllw,,, = IlFllu + II IIdFII IIuv (2.14) 

where dF is the H-derivative of F and IldF /( its Hilbert-Schmidt norm. 

2.3. Third step: Functionals over the string bundle 

We do the same hypothesis as in the first part. 
Over L(Q), we consider the form Fa as in the first part, which is closed Z-valued. We 

would like to construct the space of the functionals over i(Q), where L(Q) is a formal 
circle bundle associated to FQ We produce a set Vi of measurable subsets of L(Q) as in 
the first part. The only difference is that the vertical integral will be given by stochastic 
integrals, because c becomes a stochastic closed form. So we have to take care in the choice 
of the vertical surface. 

For this reason, we have to take care in the choice of the distinguished neighborhood over 
qi,. (v,). We will overcome this problem by using in the fiber the same type of argument 
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which were done in [Ll 0] in order to construct over a loop space the space of Lp functionals 
of a formal circle bundle over it. 

We choose a dense set of curves of smooth elements of L(G), called g, , and we choose 
the set of open balls B(gi. 6) for 6 small enough, which constitutes a cover of L(G) for 
the uniform distance. If R: E B(gi, 6). we deduce a distinguished path joining g, to gi,. 
by using a system of Lie group exponential charts (instead of Riemannian exponential 
charts as in [L9] or in [LlO]). We choose any path joining gi to c.. V; is determined 
as follows (we give the same index for the vertical condition and the horizontal condi- 
tion): q, = q;,.(y.),g, where g. E B(gi,,. 6). If q, belongs to Vi, we produce a distin- 
guished path joining q. to qi,,(y,)gi,. and to gi., to q;,.(y.): then, we operate as in the first 
part. If q. is in V;, the considered distinguished path which goes from q, to qref is called 

I;:,t(q.). 

If q, belongs to V; n V,, we would like to produce a surface with boundary &,,(q.) 
and <,,(q.) where we should be able to integrate FQ by using the theory of stochastic 
integrals. The only difference with the first part is when we have to take care to complete 
the small triangle q., q;,. (y.)g,.. and qj., (y,)gj,, by a vertical surface. because the two-form c 
consideredbecomes astochasticform in the fiber. Namely, we canjoinqi,. (v,) andq,i_, (v,)gj,, 
by a distinguished path &.j,r(v.): 

&.j.r(V.) = qi..(y.)~,,.Ri.,j.r(~.), (2.15) 

where&,j.o(y.) = ql..(y.)gi,. and &,j.r(V.) = qj..(Y.)Sj.: 
We look at the part of the distinguished path &,, (q.) between q, and qi..(v,). We apply 

gi,j,Ll()/.)(1/) to it. In u equal to 1, we arrive not far from the corresponding element for 
the corresponding path ji.j(q,) between q, and qj.,gj,,. By using the Lie group exponen- 
tial charts, we can complete the remaining hole by a distinguished surface. We construct 
by this procedure a vertical surface Sfj(q.) which completes the triangle q., q;..(y,)g!,. 
and qj,,(y,)gj,,. As in the first part, we construct a surface which completes the triangle 

qi..(Y.)gi,.% qj..(l/.)gj.. and qrer. We call it ‘;,j(q.). S;.j(q.) U ‘~j(q.) has boundary &..(q.) 

and c..(q.). 
We have first to integrate FQ over S;, j (q.), which leads exactly to the same computations 

as in the first part. The only problem is to integrate FQ over the vertical surface Szi (q.), 

that is c over Sl. j (q.). 
It is formally a stochastic integral, but we have to explain a little bit what we mean by that. 

We can include G in SO(n) such that we get a subbundle of a SO(n) trivial bundle, and we 
can imbedd M into [Wd. Q is therefore a subset of @ x S 0 (n). Let us consider the triangle 

(q., q;,.(y.)g;,., qj..(l/.)gj,.): thesurface Si.j(q.1 isgivenbythefamilys + I,,,(q,, s) which 
can be extended modulo the previous imbedding to all q,. c can be extended over the based 
loop space of iWd because we can extend of g-’ from T,(G) over r9 into an action from 
TX(&) over To@‘). We call Slrt(q.) a surface in the loop space [Wd x SO(n) which 

extends to all the loop q. S/., (q.). We can integrate the extension of c by means of the theory 

of stochastic integrals over S;;ext(q.): this stochastic integral is not anticipative. It remains 
to introduce some cutoff functionals as in the first part in order to conclude. 
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As in the first part, we construct the transition functions over V; n vj by 

pi.j(qJ =exp [-2;:& FQ] 3 
which check (i)-(v). 
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(2.16) 

Remark. The main difference with the first part is when we complete the small triangle 
q., qi., qj, by a stochastic surface. This leads to a supplementary stochastic integral to treat, 
because the paths in the fiber are only semi-martingales. 

We get the analogous definition for a measurable functional F(q.) of the formal circle 
bundle L(Q) as Definition 1.6. We can use the Definition 1.7 in order to define LP(fi), 
where jI is the formal measure over L( 0) which is the Haar measure in the fiber. 

Definition 2.5. L”-(b) is the intersection of all the LP(c) 1 -C p -C 00. 

2.4. Fourth step: Construction of stochastic gauge transforms 

Let us consider the central extension L,, I (G) of finite energy loop in G. We get a map 
n from L,,t (G) over L,,I (G). 

A stochastic gauge transform is a measurable map from L(M) into i,, t (G): y. -+ j.(y). 

Theorem 2.6. Let G be a stochastic gauge transform 1/ + jj. (y) such that ni. (y ) hus 
a bounded energy when v describes L(M). The stochastic gauge transform induces CI 
continuous application from L”-(G) into Loo-(b). 

Proof It preserves the integration in the fiber. Moreover the Girsanov density of the trans- 
formation gs + gsir& (v.) is bounded in LP(d Per+, ) when y describes L(M), because 

the loop ng.(~.) has a bounded energy when 7/ describes L(M). 0 
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